Reinforcement Learning and Bandits Lab

 

PhD Students

  • 洪偉 (MS Student during Aug. 2019-Feb. 2021, admitted to PhD program since Feb. 2021)

    • Topic: Deep reinforcement learning for network control

  • 洪鈺恆 (MS Student during Aug. 2019-Aug. 2021, admitted to PhD program since Aug. 2021)

    • Topic: Bandit learning

  • 連云暄 (co-advised by Prof. Yu-Shuen Wang)

  • 何國豪 (co-advised by Prof. I-Chen Wu)

  • 王廣達 (co-advised by Prof. Wen-Chih Peng)

MS Students

  • 朱文滔 (BS@ NCU-Math)

    • Topic: Hierarchical Reinforcement Learning

  • 陳彥儒 (BS@ NCTU-Applied Math)

    • Topic: Global Convergence of Policy Optimization in RL

  • 張千祐 (BS@ NCTU-CS)

    • Topic: Multi-Objective RL

  • 潘冠蓁 (BS@ NCTU-CS)

    • Topic: Model-Free RL

  • 詹昀銘 (BS@ NCTU-CS)

    • Topic: Physical Simulators for RL

  • 黃亭暄 (BS@ NCTU-IMF)

    • Topic: Model-Free RL

  • 葉佳翰 (BS@ NCTU-CS)

    • Topic: Action-Constrained RL

  • 陳盈圖 (BS@ NCTU-CS)

    • Topic: Multi-Objective RL

  • 陳子安 (BS@ NCTU-CS)

    • Topic: Adversarial RL

  • 陳明宏 (BS@ NCTU-Applied Math)

    • Topic: Offline-to-Online RL

  • 陳騰睿 (BS@ NCCU-Applied Math)

    • Topic: Generative Modeling for RL

  • 朱立民 (BS@ NSYSU-Applied Math)

    • Topic: Offline-to-Online Imitation Learning

MS Students Joining Fall 2024

  • 吳秉澍 (BS@ NYCU-CS)

  • 楊竣傑 (BS@ NYCU-CS)

  • 林禹亨 (BS@ NYCU-CS)

  • 温柏萱 (BS@ NYCU-CS)

  • 皮恩亞 (BS@ NCU-Math)

  • 林睿騰 (BS@ NYCU-CS)

Undergraduate Students

Joining in 2020

  • 鍾承佑 (now MS student in CMU)、柯秉志、徐煜倫

  • 王耀德、蔡育呈、周俊毅

  • 張祐銘、張祐閤

Joining in 2021

  • 鄒翔傑 (now MS student in UCSD)、黃迺絜

  • 洪婕庭、陳筱霓

  • 許承壹、林浩君

Joining in 2022

  • 吳文心、溫柏萱

  • 孟祥蓉、廖兆琪

  • 沈克軒 (now MS student in TAMU)、陳秉劼

  • 楊竣傑

Joining in 2023

  • 吳秉澍、林睿騰

  • 王振倫、楊沁瑜、施柏江

  • 林佑家

Alumni

  • 林峻立 (Sept. 2019-Aug. 2021, BS@NCU-CS, now in MediaTek)

    • Thesis: Frank-Wolfe Policy Optimization for Reinforcement Learning with Action Constraints

  • 謝秉瑾 (Sept. 2019-Aug. 2021, BS@NCCU-CS, now in Inventec)

    • Thesis: Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization

  • 李昕 (Sept. 2019-March. 2022, BS@NCKU-CS, now in PHISON)

    • Thesis: Accelerating Gaussian Process Regression via Meta-Learned Neural Processes: A Utility-Based MAML Approach

  • 蘇信恩 (Feb. 2021-Sept. 2022, BS@NCTU-CS, BS+MS in 5 years, now in Google)

    • Thesis: Coordinate Ascent Policy Optimization

  • 黃柏愷 (Sept. 2020-Sept. 2022, BS@NCKU-CS, now in Trend Micro Inc.)

    • Thesis: Q-Pensieve: Boosting Sample Efficiency of Multi-Objective RL Through Memory Sharing of Q-Snapshots

  • 郭俊廷 (Sept. 2020-Oct. 2022, BS@NCTU-EE, now in MediaTek)

    • Thesis: Adaptive-UCB for Online Restless Bandits

  • 黃睿宇 (Sept. 2020-Oct. 2022, BS@NCTU-IEM, now in MediaTek)

    • Thesis: Multi-Objective Time-Varying Bayesian Optimization

  • 楊上萱 (Sept. 2020-Nov. 2022, BS@NCTU-CS, now in MediaTek)

    • Thesis: Variance-Reduced Frank-Wolfe Policy Optimization for Action-Constrained RL

  • 歐陽良雋 (Sept. 2020-Dec. 2022, BS@ NCTU-EE, now in MediaTek)

    • Thesis: Robustifying Proximal Policy Optimization Against Noisy Critics

  • 楊祐維 (Sept. 2021-Oct. 2023, BS@ NCTU-CS)

    • Topic: Model Selection for Offline Model-Based RL via Bayesian Optimization

  • 吳程畯 (Sept. 2021-Dec. 2023, BS@ NCHU-Applied Math)

    • Topic: Learning From Expert Demonstrations With Incomplete Observations